Contents

Preface ... III
Authors and Contributors ... V

1 EUS HISTORY .. 1
 C. De Angelis, G. Caletti

2 INSTRUMENTS AND ACCESSORIES ... 9
 M. Bruno, A.M. Polifemo, C. De Angelis

3 EUS ROOM SETUP ... 21
 P. Fusaroli

4 NORMAL GI WALL AND IMAGING ARTIFACTS .. 27
 M. Bianchi, A. Pisani
 With the collaboration of: C. De Angelis

5 ESOPHAGUS ... 33
 P. Bocus, T. Togliani

6 MEDIASTINUM .. 57
 M. Wallace, V. Napolitano
 ENDOBRONCHIAL ULTRASOUND ... 69
 P.E. Lowman, M.M. Johnson

7 STOMACH AND DUODENUM .. 73
 R. Cannizzaro, P. Marone
 With the collaboration of: M. Fornasarig, S. Maiero, V. Canzonieri

8 PANCREAS .. 87
 C. De Angelis, M. Raimondo
 With the collaboration of: S.F. Manfrè, R. Pellicano, E. Dabizzi

9 BILE DUCTS .. 131
 E. Buscarini, I. Tarantino

10 IDUS AND EDUS .. 141
 M. Bruno, C. De Angelis
 With the collaboration of: D. Reggio, A. Garbarini
11 ANORECTUM AND COLON
T. Federici, G. Bonanno
With the collaboration of: D. Assisi

12 OTHER ORGANS
P. Carucci, L. De Luca

13 THERAPEUTIC EUS AND NEW APPLICATIONS
C. De Angelis, C. Fabbri, P. Fusaroli
With the collaboration of: D. Reggio, S.F. Manfrè, R.F. Brizzi, A. Garbarini, R. Rocca

14 THE ROLE OF CYTOPATHOLOGY
D. Pacchioni, C. Marchiò, A. Sapino
Figure 2.1 – Fujinon EUS radial scope EG-530UR.

Figure 2.2 – Fujinon linear scope EG-530UT.

Figure 2.3 – Olympus radial electronic echoendoscope GF-UE160.

Figure 2.4 – Olympus mechanical radial echoendoscope (GF-UM Q130). Note the bulky motor drive, located in the endoscope handle, connected to the transducer with a wire cable.

Figure 2.5 – Olympus linear echoendoscope UCT180.

Figure 2.6 – Pentax radial scope EG.3670URK.
Figure 2.20 – EUS processor Aloka Prosound Alpha 7 for radial and linear Olympus electronic.

Figure 2.21 – EUS processor Olympus EU-ME1 that enables the use of both mechanical and electronic radial echoendoscopes as well as the linear echoendoscopes from Olympus.

Figure 2.22 – Boston Scientific Expect Needles.

Figure 2.23 – Boston Scientific Expect Needles.

Figure 2.24 – The new concept Boston Scientifics Expect Flex 19 gauge needle: a new needle completely made of nitinol, very flexible and deemed suitable for tissue acquisition even in the most difficult position of the scope, like mainly the duo-
denum. In the model represented in the figure the needle is able to exit the sheath even after multiple spiral windings.

Figure 2.25 – Cook EchoTip Needles.
Figure 5.13 – Esophagus, T2 N0 adenocarcinoma, Olympus radial mechanical UM 160 probe (20 MHz): note a hypoechoic circumferential thickening (13 mm) of the esophageal wall, with fusion of mucosa, submucosa and muscularis propria; the adventitia is preserved; no periesophageal lymph nodes are visible.

Figure 5.14 – Esophagus, T2 N0 adenocarcinoma, Olympus radial mechanical UM 160 probe (7.5 MHz): note a hypoechoic circumferential thickening of the esophageal wall, with fusion of mucosa, submucosa and muscularis propria; the adventitia is preserved; no periesophageal lymph nodes are visible.

Figure 5.15 – Esophagus, T2 N0 adenocarcinoma, Olympus radial electronic UE 160 probe (6 MHz): note a hypoechoic circumferential thickening of the esophageal wall, with partial fusion of mucosa, submucosa and muscularis propria; the adventitia is preserved; no periesophageal lymph nodes are visible; the echographic layers, where no fusion occurs, are measured.

Figure 5.16 – Esophagus, T2 N1 adenocarcinoma, Olympus radial mechanical UM 160 probe (7.5 MHz): note a hypoechoic circumferential thickening of the esophageal wall, with fusion of mucosa, submucosa and muscularis propria; the adventitia is preserved; two round isoechoic 15 mm (pathologic) and 5 mm periesophageal lymph nodes are visible.

Figure 5.17 – Esophagus, T2 NX adenocarcinoma, Olympus radial electronic UE 160 (10 MHz): note a hypo-isoechoic semi-circumferential thickening of the esophageal wall, with fusion of mucosa, submucosa and muscularis propria; the adventitia is preserved; a round hypoechoic 6 x 3 mm periesophageal lymph node is visible.

Figure 5.18 – Esophagus, T2 adenocarcinoma, 3D volume reconstruction using Olympus dual planner mini-probe (UM-DP12-25R) and 3D upgrade kit (MAJ-1330).
BIBLIOGRAPHY

Figure 8.92 – Same patient at higher magnification. Cystic space inside the thickened duodenal wall.

Figure 8.93 – Pancreas and duodenal wall. Chronic pancreatitis. Olympus radial scope. Note the solid type of cystic dystrophy of the duodenal wall: fibrous solid thickening of the wall with small cysts (<1 cm) inside.

Figure 8.94 – Pancreas and duodenal wall. Chronic pancreatitis. Olympus linear scope. Note the cystic dystrophy of the duodenal wall: the cystic type of the dystrophy of the duodenal wall is characterized by the presence of cystic lesions (>1 cm) within the thickened wall of the second portion of the duodenum.

Figure 8.95 – Pancreas and duodenal wall. Chronic pancreatitis. Olympus linear scope. Note the EUS-FNA needle inside the cystic cavity of the duodenal wall. The cyst is now smaller because some fluid has already been aspirated.

Figure 8.96 – Pancreas. Complication of chronic pancreatitis. Olympus linear scope. Pseudocyst. Note the cystic lesion of the pancreas with hyperechogenic material due to debris.

Figure 8.97 – Pancreas. Complication of chronic pancreatitis. Image of the content of a pseudocyst, after FNA.
Figure 10.1 – Biliary IDUS. Radiological image. The mini-probe is entering the opacified dilated common bile duct (CBD). A Hydra Jagwire® (Boston Scientifics) has previously been positioned in the intrahepatic bile ducts.

Figure 10.2 – Biliary IDUS. Radiological image. The mini-probe is advanced in the dilated opacified CBD alongside the Hydra Jagwire®.

Figure 10.3 – Biliary IDUS: the insertion of a miniprobe in the common bile duct can be facilitated by the wire-guided version from Olympus (UM-G20-29R).

Figure 10.4 – Biliary IDUS: the only diagnostic modality that can reliably recognize the sphincter of Oddi (arrows).

Figure 10.5 – Biliary IDUS: the portal vein can be observed from the upper common bile duct.

Figure 10.6 – Biliary IDUS: a 1 cm reactive lymph node and the portal vein are visible from the upper common bile duct.
Figure 13.13 – Same patient. After Sonovue infusion, hyperenhancement is clearly appreciated by e-flow (a dedicated color Doppler analysis for vessels with slow flow). However, artifacts such as ballooning and overpainting hamper a clear appreciation of the lesion. Olympus linear electronic probe.

Figure 13.14 – A neuroendocrine tumor (T) is visible in the tail of the pancreas as a small well-demarcated hypoechoic lesion, with regular margins. Olympus linear electronic probe.

Figure 13.15 – Same patient. At CH EUS the lesion appears hyperenhanced with homogeneous pattern. This finding is very typical of neuroendocrine tumors. Olympus linear electronic probe.

Figure 13.16 – A pancreatic pseudocyst with abundant necrosis inside, seen as echogenic material. CH EUS shows lack of enhancement at the level of the necrotic material thereby allowing differentiation towards cystic neoplasms. Olympus linear electronic probe.

Figure 13.17 – A pancreatic serous cystadenoma. The typical honeycomb pattern is visible. Olympus linear electronic probe.

Figure 13.18 – Same patient. After infusion of Sonovue, power Doppler shows homogeneous hyperenhancement at the level of the pancreatic cyst. Olympus linear electronic probe.
Figure 13.79 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): EUS-guided injection of contrast through an access needle to obtain cystography.

Figure 13.80 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): EUS vision of the guide-wire positioned in the pseudocyst.

Figure 13.81 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): the radiological view of the guide-wire in the cyst.

Figure 13.82 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): the endoscopic view of the guide-wire in the cyst.

Figure 13.83 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): the positioning of the cystotome.

Figure 13.84 – Same patient. Pancreatic Pseudocyst transmural drainage (EUS-Guided cystogastrostomy): the puncture of the gastric wall with cystotome to obtain the passage in the cystic cavity.
Figure 14.7 – Pancreatic ductal adenocarcinoma. Fragment of adenocarcinoma on a cell block section.

Figure 14.8 – Pancreatic ductal adenocarcinoma. Neoplastic glands are best appreciated at high magnification (higher magnification of image in figure 14.7).

Figure 14.9 – Poorly differentiated pancreatic ductal adenocarcinoma. Fragments of carcinoma on a cell block section.

Figure 14.10 – Poorly differentiated pancreatic ductal adenocarcinoma. Neoplastic glands are best appreciated at high magnification (higher magnification of image in figure 14.9).

Figure 14.11 – Pancreatic ductal adenocarcinoma. An atypical mitotic figure.

Figure 14.12 – Pancreatic ductal adenocarcinoma. High magnification of neoplastic glands.